
dataset
Release 1.6.2

unknown

Jul 12, 2023

CONTENTS

1 Features 3

2 Contents 5
2.1 Installation Guide . 5
2.2 Quickstart . 5
2.3 API documentation . 9
2.4 Advanced filters . 15

3 Contributors 17

Index 19

i

ii

dataset, Release 1.6.2

Although managing data in relational databases has plenty of benefits, they’re rarely used in day-to-day work with small
to medium scale datasets. But why is that? Why do we see an awful lot of data stored in static files in CSV or JSON
format, even though they are hard to query and update incrementally?

The answer is that programmers are lazy, and thus they tend to prefer the easiest solution they find. And in Python,
a database isn’t the simplest solution for storing a bunch of structured data. This is what dataset is going to change!

dataset provides a simple abstraction layer that removes most direct SQL statements without the necessity for a full
ORM model - essentially, databases can be used like a JSON file or NoSQL store.

A simple data loading script using dataset might look like this:

import dataset

db = dataset.connect('sqlite:///:memory:')

table = db['sometable']
table.insert(dict(name='John Doe', age=37))
table.insert(dict(name='Jane Doe', age=34, gender='female'))

john = table.find_one(name='John Doe')

Here is similar code, without dataset.

CONTENTS 1

https://gist.github.com/gka/5296492

dataset, Release 1.6.2

2 CONTENTS

CHAPTER

ONE

FEATURES

• Automatic schema: If a table or column is written that does not exist in the database, it will be created automat-
ically.

• Upserts: Records are either created or updated, depending on whether an existing version can be found.

• Query helpers for simple queries such as all rows in a table or all distinct values across a set of columns.

• Compatibility: Being built on top of SQLAlchemy, dataset works with all major databases, such as SQLite,
PostgreSQL and MySQL.

3

http://www.sqlalchemy.org/

dataset, Release 1.6.2

4 Chapter 1. Features

CHAPTER

TWO

CONTENTS

2.1 Installation Guide

The easiest way is to install dataset from the Python Package Index using pip or easy_install:

$ pip install dataset

To install it manually simply download the repository from Github:

$ git clone git://github.com/pudo/dataset.git
$ cd dataset/
$ python setup.py install

Depending on the type of database backend, you may also need to install a database specific driver package. For
MySQL, this is MySQLdb, for Postgres its psycopg2. SQLite support is integrated into Python.

2.2 Quickstart

Hi, welcome to the twelve-minute quick-start tutorial.

2.2.1 Connecting to a database

At first you need to import the dataset package :)

import dataset

To connect to a database you need to identify it by its URL, which basically is a string of the form "dialect://
user:password@host/dbname". Here are a few examples for different database backends:

connecting to a SQLite database
db = dataset.connect('sqlite:///mydatabase.db')

connecting to a MySQL database with user and password
db = dataset.connect('mysql://user:password@localhost/mydatabase')

connecting to a PostgreSQL database
db = dataset.connect('postgresql://scott:tiger@localhost:5432/mydatabase')

It is also possible to define the URL as an environment variable called DATABASE_URL so you can initialize database
connection without explicitly passing an URL:

5

https://pypi.python.org/pypi/dataset/
http://docs.sqlalchemy.org/en/latest/core/engines.html#engine-creation-api

dataset, Release 1.6.2

db = dataset.connect()

Depending on which database you’re using, you may also have to install the database bindings to support that database.
SQLite is included in the Python core, but PostgreSQL requires psycopg2 to be installed. MySQL can be enabled by
installing the mysql-db drivers.

2.2.2 Storing data

To store some data you need to get a reference to a table. You don’t need to worry about whether the table already exists
or not, since dataset will create it automatically:

get a reference to the table 'user'
table = db['user']

Now storing data in a table is a matter of a single function call. Just pass a dict to insert. Note that you don’t need to
create the columns name and age – dataset will do this automatically:

Insert a new record.
table.insert(dict(name='John Doe', age=46, country='China'))

dataset will create "missing" columns any time you insert a dict with an unknown key
table.insert(dict(name='Jane Doe', age=37, country='France', gender='female'))

Updating existing entries is easy, too:

table.update(dict(name='John Doe', age=47), ['name'])

The list of filter columns given as the second argument filter using the values in the first column. If you don’t want to
update over a particular value, just use the auto-generated id column.

2.2.3 Using Transactions

You can group a set of database updates in a transaction. In that case, all updates are committed at once or, in case of
exception, all of them are reverted. Transactions are supported through a context manager, so they can be used through
a with statement:

with dataset.connect() as tx:
tx['user'].insert(dict(name='John Doe', age=46, country='China'))

You can get same functionality by invoking the methods begin(), commit() and rollback() explicitly:

db = dataset.connect()
db.begin()
try:

db['user'].insert(dict(name='John Doe', age=46, country='China'))
db.commit()

except:
db.rollback()

Nested transactions are supported too:

6 Chapter 2. Contents

http://docs.python.org/2/library/stdtypes.html#dict

dataset, Release 1.6.2

db = dataset.connect()
with db as tx1:

tx1['user'].insert(dict(name='John Doe', age=46, country='China'))
with db as tx2:

tx2['user'].insert(dict(name='Jane Doe', age=37, country='France', gender='female
→˓'))

2.2.4 Inspecting databases and tables

When dealing with unknown databases we might want to check their structure first. To start exploring, let’s find out
what tables are stored in the database:

>>> print(db.tables)
[u'user']

Now, let’s list all columns available in the table user:

>>> print(db['user'].columns)
[u'id', u'country', u'age', u'name', u'gender']

Using len() we can get the total number of rows in a table:

>>> print(len(db['user']))
2

2.2.5 Reading data from tables

Now let’s get some real data out of the table:

users = db['user'].all()

If we simply want to iterate over all rows in a table, we can omit all():

for user in db['user']:
print(user['age'])

We can search for specific entries using find() and find_one():

All users from China
chinese_users = table.find(country='China')

Get a specific user
john = table.find_one(name='John Doe')

Find multiple at once
winners = table.find(id=[1, 3, 7])

Find by comparison operator
elderly_users = table.find(age={'>=': 70})
possible_customers = table.find(age={'between': [21, 80]})

(continues on next page)

2.2. Quickstart 7

dataset, Release 1.6.2

(continued from previous page)

Use the underlying SQLAlchemy directly
elderly_users = table.find(table.table.columns.age >= 70)

See Advanced filters for details on complex filters.

Using distinct() we can grab a set of rows with unique values in one or more columns:

Get one user per country
db['user'].distinct('country')

Finally, you can use the row_type parameter to choose the data type in which results will be returned:

import dataset
from stuf import stuf

db = dataset.connect('sqlite:///mydatabase.db', row_type=stuf)

Now contents will be returned in stuf objects (basically, dict objects whose elements can be accessed as attributes
(item.name) as well as by index (item['name']).

2.2.6 Running custom SQL queries

Of course the main reason you’re using a database is that you want to use the full power of SQL queries. Here’s how
you run them with dataset:

result = db.query('SELECT country, COUNT(*) c FROM user GROUP BY country')
for row in result:
print(row['country'], row['c'])

The query()method can also be used to access the underlying SQLAlchemy core API, which allows for the program-
matic construction of more complex queries:

table = db['user'].table
statement = table.select(table.c.name.like('%John%'))
result = db.query(statement)

2.2.7 Limitations of dataset

The goal of dataset is to make basic database operations simpler, by expressing some relatively basic operations in a
Pythonic way. The downside of this approach is that as your application grows more complex, you may begin to need
access to more advanced operations and be forced to switch to using SQLAlchemy proper, without the dataset layer
(instead, you may want to play with SQLAlchemy’s ORM).

When that moment comes, take the hit. SQLAlchemy is an amazing piece of Python code, and it will provide you with
idiomatic access to all of SQL’s functions.

Some of the specific aspects of SQL that are not exposed in dataset, and are considered out of scope for the project,
include:

• Foreign key relationships between tables, and expressing one-to-many and many-to-many relationships in id-
iomatic Python.

• Python-wrapped JOIN queries.

8 Chapter 2. Contents

http://docs.sqlalchemy.org/en/latest/orm/query.html#the-query-object

dataset, Release 1.6.2

• Creating databases, or managing DBMS software.

• Support for Python 2.x

There’s also some functionality that might be cool to support in the future, but that requires significant engineering:

• Async operations

• Database-native UPSERT semantics

2.3 API documentation

2.3.1 Connecting

dataset.connect(url=None, schema=None, engine_kwargs=None, ensure_schema=True, row_type=<class
'collections.OrderedDict'>, sqlite_wal_mode=True, on_connect_statements=None)

Opens a new connection to a database.

url can be any valid SQLAlchemy engine URL. If url is not defined it will try to use DATABASE_URL from
environment variable. Returns an instance of Database. Additionally, engine_kwargs will be directly passed to
SQLAlchemy, e.g. set engine_kwargs={‘pool_recycle’: 3600} will avoid DB connection timeout. Set row_type
to an alternate dict-like class to change the type of container rows are stored in.:

db = dataset.connect('sqlite:///factbook.db')

One of the main features of dataset is to automatically create tables and columns as data is inserted. This
behaviour can optionally be disabled via the ensure_schema argument. It can also be overridden in a lot of the
data manipulation methods using the ensure flag.

If you want to run custom SQLite pragmas on database connect, you can add them to on_connect_statements as
a set of strings. You can view a full list of PRAGMAs here.

2.3.2 Notes

• dataset uses SQLAlchemy connection pooling when connecting to the database. There is no way of explicitly
clearing or shutting down the connections, other than having the dataset instance garbage collected.

2.3.3 Database

class dataset.Database(url, schema=None, engine_kwargs=None, ensure_schema=True, row_type=<class
'collections.OrderedDict'>, sqlite_wal_mode=True, on_connect_statements=None)

A database object represents a SQL database with multiple tables.

begin()

Enter a transaction explicitly.

No data will be written until the transaction has been committed.

commit()

Commit the current transaction.

Make all statements executed since the transaction was begun permanent.

2.3. API documentation 9

http://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.create_engine
http://docs.sqlalchemy.org/en/latest/core/pooling.html#setting-pool-recycle
https://www.sqlite.org/pragma.html

dataset, Release 1.6.2

create_table(table_name, primary_id=None, primary_type=None, primary_increment=None)
Create a new table.

Either loads a table or creates it if it doesn’t exist yet. You can define the name and type of the primary
key field, if a new table is to be created. The default is to create an auto-incrementing integer, id. You can
also set the primary key to be a string or big integer. The caller will be responsible for the uniqueness of
primary_id if it is defined as a text type. You can disable auto-increment behaviour for numeric primary
keys by setting primary_increment to False.

Returns a Table instance.

table = db.create_table('population')

custom id and type
table2 = db.create_table('population2', 'age')
table3 = db.create_table('population3',

primary_id='city',
primary_type=db.types.text)

custom length of String
table4 = db.create_table('population4',

primary_id='city',
primary_type=db.types.string(25))

no primary key
table5 = db.create_table('population5',

primary_id=False)

get_table(table_name, primary_id=None, primary_type=None, primary_increment=None)
Load or create a table.

This is now the same as create_table.

table = db.get_table('population')
you can also use the short-hand syntax:
table = db['population']

load_table(table_name)
Load a table.

This will fail if the tables does not already exist in the database. If the table exists, its columns will be
reflected and are available on the Table object.

Returns a Table instance.

table = db.load_table('population')

query(query, *args, **kwargs)
Run a statement on the database directly.

Allows for the execution of arbitrary read/write queries. A query can either be a plain text string, or a
SQLAlchemy expression. If a plain string is passed in, it will be converted to an expression automatically.

Further positional and keyword arguments will be used for parameter binding. To include a positional
argument in your query, use question marks in the query (i.e. SELECT * FROM tbl WHERE a = ?). For
keyword arguments, use a bind parameter (i.e. SELECT * FROM tbl WHERE a = :foo).

10 Chapter 2. Contents

http://docs.sqlalchemy.org/en/latest/core/tutorial.html#selecting

dataset, Release 1.6.2

statement = 'SELECT user, COUNT(*) c FROM photos GROUP BY user'
for row in db.query(statement):

print(row['user'], row['c'])

The returned iterator will yield each result sequentially.

rollback()

Roll back the current transaction.

Discard all statements executed since the transaction was begun.

property tables

Get a listing of all tables that exist in the database.

2.3.4 Table

class dataset.Table(database, table_name, primary_id=None, primary_type=None, primary_increment=None,
auto_create=False)

Represents a table in a database and exposes common operations.

__iter__()

Return all rows of the table as simple dictionaries.

Allows for iterating over all rows in the table without explicitly calling find().

for row in table:
print(row)

__len__()

Return the number of rows in the table.

all(*_clauses, **kwargs)
Perform a simple search on the table.

Simply pass keyword arguments as filter.

results = table.find(country='France')
results = table.find(country='France', year=1980)

Using _limit:

just return the first 10 rows
results = table.find(country='France', _limit=10)

You can sort the results by single or multiple columns. Append a minus sign to the column name for
descending order:

sort results by a column 'year'
results = table.find(country='France', order_by='year')
return all rows sorted by multiple columns (descending by year)
results = table.find(order_by=['country', '-year'])

You can also submit filters based on criteria other than equality, see Advanced filters for details.

To run more complex queries with JOINs, or to perform GROUP BY-style aggregation, you can also use
db.query() to run raw SQL queries instead.

2.3. API documentation 11

dataset, Release 1.6.2

property columns

Get a listing of all columns that exist in the table.

count(*_clauses, **kwargs)
Return the count of results for the given filter set.

create_column(name, type, **kwargs)
Create a new column name of a specified type.

table.create_column('created_at', db.types.datetime)

type corresponds to an SQLAlchemy type as described by dataset.db.Types. Additional keyword arguments
are passed to the constructor of Column, so that default values, and options like nullable and unique can be
set.

table.create_column('key', unique=True, nullable=False)
table.create_column('food', default='banana')

create_column_by_example(name, value)
Explicitly create a new column name with a type that is appropriate to store the given example value. The
type is guessed in the same way as for the insert method with ensure=True.

table.create_column_by_example('length', 4.2)

If a column of the same name already exists, no action is taken, even if it is not of the type we would have
created.

create_index(columns, name=None, **kw)
Create an index to speed up queries on a table.

If no name is given a random name is created.

table.create_index(['name', 'country'])

delete(*clauses, **filters)
Delete rows from the table.

Keyword arguments can be used to add column-based filters. The filter criterion will always be equality:

table.delete(place='Berlin')

If no arguments are given, all records are deleted.

distinct(*args, **_filter)
Return all the unique (distinct) values for the given columns.

returns only one row per year, ignoring the rest
table.distinct('year')
works with multiple columns, too
table.distinct('year', 'country')
you can also combine this with a filter
table.distinct('year', country='China')

drop()

Drop the table from the database.

Deletes both the schema and all the contents within it.

12 Chapter 2. Contents

dataset, Release 1.6.2

drop_column(name)
Drop the column name.

table.drop_column('created_at')

find(*_clauses, **kwargs)
Perform a simple search on the table.

Simply pass keyword arguments as filter.

results = table.find(country='France')
results = table.find(country='France', year=1980)

Using _limit:

just return the first 10 rows
results = table.find(country='France', _limit=10)

You can sort the results by single or multiple columns. Append a minus sign to the column name for
descending order:

sort results by a column 'year'
results = table.find(country='France', order_by='year')
return all rows sorted by multiple columns (descending by year)
results = table.find(order_by=['country', '-year'])

You can also submit filters based on criteria other than equality, see Advanced filters for details.

To run more complex queries with JOINs, or to perform GROUP BY-style aggregation, you can also use
db.query() to run raw SQL queries instead.

find_one(*args, **kwargs)
Get a single result from the table.

Works just like find() but returns one result, or None.

row = table.find_one(country='United States')

has_column(column)
Check if a column with the given name exists on this table.

has_index(columns)
Check if an index exists to cover the given columns.

insert(row, ensure=None, types=None)
Add a row dict by inserting it into the table.

If ensure is set, any of the keys of the row are not table columns, they will be created automatically.

During column creation, types will be checked for a key matching the name of a column to be created,
and the given SQLAlchemy column type will be used. Otherwise, the type is guessed from the row value,
defaulting to a simple unicode field.

data = dict(title='I am a banana!')
table.insert(data)

Returns the inserted row’s primary key.

2.3. API documentation 13

dataset, Release 1.6.2

insert_ignore(row, keys, ensure=None, types=None)
Add a row dict into the table if the row does not exist.

If rows with matching keys exist no change is made.

Setting ensure results in automatically creating missing columns, i.e., keys of the row are not table
columns.

During column creation, types will be checked for a key matching the name of a column to be created,
and the given SQLAlchemy column type will be used. Otherwise, the type is guessed from the row value,
defaulting to a simple unicode field.

data = dict(id=10, title='I am a banana!')
table.insert_ignore(data, ['id'])

insert_many(rows, chunk_size=1000, ensure=None, types=None)
Add many rows at a time.

This is significantly faster than adding them one by one. Per default the rows are processed in chunks of
1000 per commit, unless you specify a different chunk_size.

See insert() for details on the other parameters.

rows = [dict(name='Dolly')] * 10000
table.insert_many(rows)

update(row, keys, ensure=None, types=None, return_count=False)
Update a row in the table.

The update is managed via the set of column names stated in keys: they will be used as filters for the data
to be updated, using the values in row.

update all entries with id matching 10, setting their title
columns
data = dict(id=10, title='I am a banana!')
table.update(data, ['id'])

If keys in row update columns not present in the table, they will be created based on the settings of ensure
and types, matching the behavior of insert().

update_many(rows, keys, chunk_size=1000, ensure=None, types=None)
Update many rows in the table at a time.

This is significantly faster than updating them one by one. Per default the rows are processed in chunks of
1000 per commit, unless you specify a different chunk_size.

See update() for details on the other parameters.

upsert(row, keys, ensure=None, types=None)
An UPSERT is a smart combination of insert and update.

If rows with matching keys exist they will be updated, otherwise a new row is inserted in the table.

data = dict(id=10, title='I am a banana!')
table.upsert(data, ['id'])

upsert_many(rows, keys, chunk_size=1000, ensure=None, types=None)
Sorts multiple input rows into upserts and inserts. Inserts are passed to insert and upserts are updated.

See upsert() and insert_many().

14 Chapter 2. Contents

dataset, Release 1.6.2

2.3.5 Data Export

Note: Data exporting has been extracted into a stand-alone package, datafreeze. See the relevant repository
here.

2.4 Advanced filters

dataset provides two methods for running queries: table.find() and db.query(). The table find helper method
provides limited, but simple filtering options:

results = table.find(column={operator: value})
e.g.:
results = table.find(name={'like': '%mole rat%'})

A special form is using keyword searches on specific columns:

results = table.find(value=5)
equal to:
results = table.find(value={'=': 5})

Lists, tuples and sets are turned into `IN` queries:
results = table.find(category=('foo', 'bar'))
equal to:
results = table.find(value={'in': ('foo', 'bar')})

The following comparison operators are supported:

Operator Description
gt, > Greater than
lt, < Less than
gte, >= Greater or equal
lte, <= Less or equal
!=, <>, not Not equal to a single value
in Value is in the given sequence
notin Value is not in the given sequence
like, ilike Text search, ILIKE is case-insensitive. Use % as a wildcard
notlike Like text search, except check if pattern does not exist
between, .. Value is between two values in the given tuple
startswith String starts with
endswith String ends with

Querying for a specific value on a column that does not exist on the table will return no results.

You can also pass additional SQLAlchemy clauses into the table.find() method by falling back onto the
SQLAlchemy core objects wrapped by dataset:

Get the column `city` from the dataset table:
column = table.table.columns.city
Define a SQLAlchemy clause:
clause = column.ilike('amsterda%')
Query using the clause:
results = table.find(clause)

2.4. Advanced filters 15

https://github.com/pudo/datafreeze

dataset, Release 1.6.2

This can also be used to define combined OR clauses if needed (e.g. city = ‘Bla’ OR country = ‘Foo’).

2.4.1 Queries using raw SQL

To run more complex queries with JOINs, or to perform GROUP BY-style aggregation, you can also use db.query()
to run raw SQL queries instead. This also supports parameterisation to avoid SQL injections.

Finally, you should consider falling back to SQLAlchemy core to construct queries if you are looking for a program-
matic, composable method of generating SQL in Python.

16 Chapter 2. Contents

https://docs.sqlalchemy.org/

CHAPTER

THREE

CONTRIBUTORS

dataset is written and maintained by Friedrich Lindenberg, Gregor Aisch and Stefan Wehrmeyer. Its code is largely
based on the preceding libraries sqlaload and datafreeze. And of course, we’re standing on the shoulders of giants.

Our cute little naked mole rat was drawn by Johannes Koch.

17

https://github.com/pudo
https://github.com/gka
https://github.com/stefanw
https://github.com/okfn/sqlaload
http://www.sqlalchemy.org/
http://www.youtube.com/watch?feature=player_detailpage&v=A5DcOEzW1wA#t=14s
http://chechuchape.com/

dataset, Release 1.6.2

18 Chapter 3. Contributors

INDEX

Symbols
__iter__() (dataset.Table method), 11
__len__() (dataset.Table method), 11

A
all() (dataset.Table method), 11

B
begin() (dataset.Database method), 9

C
columns (dataset.Table property), 12
commit() (dataset.Database method), 9
connect() (in module dataset), 9
count() (dataset.Table method), 12
create_column() (dataset.Table method), 12
create_column_by_example() (dataset.Table

method), 12
create_index() (dataset.Table method), 12
create_table() (dataset.Database method), 9

D
Database (class in dataset), 9
delete() (dataset.Table method), 12
distinct() (dataset.Table method), 12
drop() (dataset.Table method), 12
drop_column() (dataset.Table method), 12

F
find() (dataset.Table method), 13
find_one() (dataset.Table method), 13

G
get_table() (dataset.Database method), 10

H
has_column() (dataset.Table method), 13
has_index() (dataset.Table method), 13

I
insert() (dataset.Table method), 13

insert_ignore() (dataset.Table method), 13
insert_many() (dataset.Table method), 14

L
load_table() (dataset.Database method), 10

Q
query() (dataset.Database method), 10

R
rollback() (dataset.Database method), 11

T
Table (class in dataset), 11
tables (dataset.Database property), 11

U
update() (dataset.Table method), 14
update_many() (dataset.Table method), 14
upsert() (dataset.Table method), 14
upsert_many() (dataset.Table method), 14

19

	Features
	Contents
	Installation Guide
	Quickstart
	Connecting to a database
	Storing data
	Using Transactions
	Inspecting databases and tables
	Reading data from tables
	Running custom SQL queries
	Limitations of dataset

	API documentation
	Connecting
	Notes
	Database
	Table
	Data Export

	Advanced filters
	Queries using raw SQL

	Contributors
	Index

